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1 Introduction 
What we now call the Brownian motion of microscopic particles was described for 
the first time in 1828 by the botanist Robert Brown.’ Some sixty years later, Gouy 
correctly attributed2 the phenomenon to the thermal motion of the surrounding 
liquid molecules. It was observed at an early ~ t a g e ~ * ~  that Brownian movement is 
most lively with small particles in liquids of low viscosity, and that Brownian drift 
velocities are some lo8 times smaller than typical molecular velocities. Roughly 
speaking, particles can be defined as Brownian if they are larger than normal 
solvent molecules (or ions), but still small enough to be perturbed appreciably by 
solvent molecular motion. This puts them in the colloidal size range (1 nm-1 pm). 

This article is concerned with the behaviour of proteins viewed as small colloidal 
particles. What follows is a description of how certain aspects of protein dynamics 
can be treated theoretically as problems which are soluble with the help of a 
computer. To establish our frame of reference, let us begin by listing some biological 
processes where we might tentatively expect Brownian motion to be a significant 
factor: (i) protein adsorption at a cell surface; (ii) the encounter between enzyme 
and substrate molecules; (iii) the interaction of an antibody with an antigen; (iv) 
protein mobility in a membrane, or along a fibre; (v) biochemical assembly by 
monomer aggregation or polymerization; and (vi) protein unfolding and 
denaturation. The common element in these processes is a kinetic stage which is 
diffusion controlled; and it is this element which we wish to emphasize here. 

In chemistry and biology, the complexities of macroscopic change are driven by 
two types of physical events: time-reversible ones, which obey the classical laws 
(Newton’s equations of motion), and time-irreversible ones, which obey 
probabilistic laws having their origin ultimately in the Second Law of 
 thermodynamic^.^ Generally speaking, systems containing a small number of 
interacting objects are time reversible, and those containing a very large number 
are time irreversible. The dynamics of a few interacting Brownian particles 
immersed in an inert fluid medium (millions of molecules) can be regarded as being 
partly deterministic (reversible) and partly chaotic (irreversible). The deterministic 
part of the motion arises from interparticle colloidal forces (electrostatic, van der 
Waals, etc.) and the influence of external fields (magnetic, gravitational, etc.). The 

R. Brown, Ann. d. Phys. u. Chem., 1828, 14, 294. 
M. Goiiy, J.  Physique (Paris), 1888, 7 ,  561. 
F. M. Exner, Ann. Phys., 1900, 2, 843. 
I. Prigogine and I. Stengers, ‘Order out of Chaos’, Heinemann, London, 1984. 
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chaotic part of the motion is associated with fluctuating Brownian forces from the 
apparently random thermal motion of the solvent molecules. The random impacts 
of surrounding molecules also give rise to frictional forces acting on the particles. 
Since the size of these frictional forces is dependent on the relative separations of the 
particles, it is found that the Brownian motions of the different particles, whilst 
remaining irregular, are in fact statistically coupled via the fluid medium. 

The description of condensed matter of interest here is one combining Brownian 
motion with continuum hydrodynamics. The subject of Brownian motion deals 
with such entities as colloidal particles, diffusion coefficients, and statistical 
probabilities; hydrodynamics, on the other hand, is concerned with macroscopic 
bodies, steady flow, and continuum dynamics. Bring the two together and, to coin a 
phrase, we get Brownian dynamics. This is a kinetic theory essentially diffusive in 
character, but also including the effects of particle interactions, both hydro- 
dynamical and colloidal. Brownian dynamics is appropriate for describing protein 
motions over distances which are large compared with the solvent molecular size, 
and times which are long compared with the interval between successive solvent 
impacts. 

In practice, most Brownian dynamics problems of chemical interest are not 
amenable to analytic solutions, but can be solved numerically using a computer. 
The usefulness of computer simulation in describing the dynamics of proteins is 
becoming increasingly recognized,’-’ if not quite yet universally accepted.* A great 
strength of simulation, sometimes called ‘computer experiment’, is that it enables 
one to follow the consequences of changing certain variables independently in a 
way not possible often in a real experiment. In outlining suitable models for protein 
simulation, we shall be concerned here with emphasizing the underlying physical 
features. Necessarily, this will be at the expense of omitting some of the biochemical 
ramifications-although, in principle, the approach is sufficiently general to include 
all detailed aspects if the time and trouble are taken to put them in. 

2 Basic Principles 
Although Brownian-dynamics computer simulation is a relatively new field of 
study, it is based on some old and well-established principles. We begin our discus- 
sion of the theoretical background by mentioning the major historical contributions. 

A. Einstein’s Equation.-In his classic paper on Brownian movement, published 
in 1905, Einstein showed that the average displacement x,, of a tagged particle in 
one-dimensional projection follows equation 1 

x,, = ( ( X 2 ) ) t  = (2Df) t  

J. A. McCammon and M. Karplus, Ann. Rev. Phys. Chem., 1980, 31, 29. 
M. Karplus, Ber. Bunsenges. Phys. Chem., 1982, 86, 386. 

A. Cooper, Prog. Biophys. Molec. Biol., 1984, 44, 181. 
A. Einstein, Ann. Phys., 1905, 17, 549 (English translation: ‘Albert Einstein, Investigations on the Theory 
of Brownian Movement’, ed. R. Fiirth, Dover, New York, 1956). See also: A. Pais, “‘Subtle is the 
Lord. . .”, The Science and Life of Albert Einstein’, Oxford University Press, New York, 1982, chap. 5. 

’ J. A. McCammon, Rep. Prog. Phys., 1984, 47, 1. 
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where t is time, D is a diffusion coefficient, and (x2) is the mean-square 
displacement in the x-direction. As each Cartesian direction is equivalent, it follows 
that 

(rZ> = (x') + ( y ' )  + ( z2>  = 3(x2> (2) 

where Y is the total instantaneous distance travelled by the particle in time t. The 
crux of the derivation of equation 1, set out briefly below, is the recognition that the 
time-dependent probability distribution for random movement of a single particle 
is mathematically equivalent to the development of the concentration profile in 
bulk diffusion. 

Imagine a large number n of identical non-interacting* particles. They are 
accumulated at time t = 0 in the immediate vicinity of the plane at x = 0, and then 
left to themselves. The change in local particle density p(x,t)  at position x and time t 
is described by the differential equation 

known usually as Fick's Second Law of Diffusion." The density profile is found by 
solving equation 3 subject to boundary conditions, 

(x # 0, I = 0) 
p(x,t) = 0, { ( x - +  f m , t  > 0) 

and a normalization condition, equation 5. 

p(x,~)dx = n LW 

(4) 

As material has an equal chance of diffusing to the left (- x) or right (+ x), the mean 
displacement (x) is obviously zero. The developing profile from equations 3-5 is a 
normal distribution centred at x = 0: 

Combining equation 6 with the definition of the mean-square displacement, 
equation 7, 

+a, 

(x') = n-l J-m p(x,t)x2 dx (7) 

gives Einstein's equation (equation 1) after integration. 
* All real particles do, of course, interact strongly at close range. The theoretical position can be realized in 
the laboratory, however, if we imagine that the particles are so widely distributed in the y-z plane that pairs 
have negligible chance of colliding during the time-scale of observation. 
l o  A. E. Fick, Phiios. Mag., 1855, 10, 30. 
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A weakness in Einstein's original derivation, pointed out by Fiirth," is the 
necessity to invoke a time interval T which is small compared with t, but 
nevertheless of such magnitude that movements executed by a particle in two 
successive intervals T are considered as mutually independent. When the time for 
particle motion is short, this assumption is no longer valid. Under these 
circumstances, (x') is properly given by' '*12 equation 8 

(x') = 2D[t - rnp + exp(-t/rnp)] (8) 

where m is the particle mass, and p is a coefficient of mobility defined below. 
Einstein's equation holds for t >> mp. This lower limit of time validity increases 
with the square of the particle size (as m K d3 and p K a ' ) ;  it is ca. lo-' s for a 1 pm 
neutrally-buoyant particle in water at room temperature. 

B. Friction and Mobility Coefficients.-From chaotic Brownian motion, we now 
turn to the subject of steady hydrodynamic flow.13 

When a small constant force F is applied to a macroscopic body immersed in a 
hydrodynamic fluid, it rapidly attains a constant velocity v given by 

v = pF (9) 

where p is a mobility coefficient. Under steady-state conditions, the applied force is 
exactly counterbalanced by a frictional force J 

So the friction coefficient 6 is simply the reciprocal of p. Both are related to the size 
and shape of the body, and the viscosity of the fluid, and the above equations 
provide the physical basis for determining macromolecular size and shape from 
techniques such as centrifugation or electrophoresis. Although strictly applicable 
only to objects in the macroscopic domain, there is a long history of successful 
application of hydrodynamic theory down to particles of the size of sucrose 
molecules. 

Whether one chooses to work in terms of friction or mobility coefficients is 
largely a matter of convenience. The distinction is trivial in equations 9 and 10, but 
more complicated for objects of arbitrary shape in the vicinity of other like objects. 
The magnitude of the friction (or mobility) coefficient then depends on the forces 
acting on all the objects immersed in the fluid, and mathematically this means that 
scalar quantities p and < must be replaced by tensors p and <. Analogously, the 
scalar diffusion coefficient is replaced by a diffusion tensor D. 

C. Langevin's Equation.-The one-dimensional motion of an isolated Brownian 

R. Fiirth, Z .  Phys., 1920, 2, 244. 
l 2  L. S. Ornstein, Proc. Amsf., 1918, 21, 96. 
l 3  J. Happel and H. Brenner, 'Low Reynolds Number Hydrodynamics', 2nd edn., Noordhoff, Leiden, 1973. 
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particle is described by the simple Langevin equation14 

m(dv/dt) = -6v + R ( f )  (1 1) 

where R(t) represents a random force due to solvent collisions. Equation 11 is an 
example of a stochastic equation of motion. It is nothing more than Newton’s 
equation of motion (mass x acceleration = force) plus a random term. The latter is 
normally assumed to satisfy two conditions: firstly, that the process R(t) is 
Gaussian, and, secondly, that its correlation time is infinitely short, i.e., 

where t ,  and t ,  are two times, G,  is a constant, and 6(x) is the Dirac function 

[defined as G(x)dx = 1 for x = 0, 6(x) = 0 for x # 01. It turns out that the 

Gaussian assumption holds for a particle of mass much larger than that of the 
solvent molecules, a condition which is readily satisfied for a globular protein in 
water. 

The Langevin approach enables a link to be formed between a statistical 
quantity R and a hydrodynamic quantity 4, leading to a formal expression for the 
diffusion coefficient (in velocity space) D,: 

s 

lltzDv = 1; (R(O)R(t)) dt = k q  (13) 

From equations 12 and 13 we see that G, = (kT/n)c, and so the stochastic term is 
given by 

Equation 14 is one of the most fundamental relationships in statistical mechanics. 
Commonly known as the fluctuation4issipation theorem,’ it expresses a 
relationship between hydrodynamic dissipation and an ensemble average over 
fluctuations in the system. It is readily generalized to three dimensions, and the 
nature of the random force is independent of any systematic forces acting on the 
particles, whether they arise from interactions with other particles or from the 
influence of an external field. It also applies to rotational motion.15 

3 Diffusion 
A. Phenomenological Coefficients.-As applied to one-dimensional mass 
transport, Fick’s First Law of Diffusion states6 that the mass flux J, in direction xis 
given by 
l4 S. Chandrasekar, Rev. Mod. Phys., 1943, 15, 1 (reprinted in: ‘Selected Papers on Noise and Stochastic 

Processes’, ed. N. Wax, Dover, New York, 1959). 
R. Kubo, Rep. Prog. Phys., 1966, 29, 255. For rotational applications see: J. McConnell, ‘Rotational 
Brownian Motion and Dielectric Theory’, Academic Press, London, 1980. 
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where D is a phenomenological coefficient, and p is the local density of the diffusing 
species. In three dimensions, we have 

where V is the del operator defined by 

V = i(a/ax) + j(a/i?y) + k(i?/az) (1 7) 

and i, j ,  and k are unit vectors in x,  y ,  and z directions. 
Consider a large number of identical particles far enough apart in a fluid that 

they do not interact in any way. Each particle requires six independent parameters 
[qi(i = 1,6)] to specify its instantaneous configuration. Three parameters define 
position (x,y,z), and three define orientation (cp,, (p,, cp,). When Fick’s Law is 
generalized to position-orientation space, each diffusive flux Ji ( i  = 1,6) is linearly 
related to each density gradient (ap/8qj )  (j = 1,6) by the phenomenological equation 

where Dij  is now an element in a 6 x 6 matrix called the diffusion tensor, and p is 
the instantaneous particle density in position-orientation space. We represent the 
change in particle position during a small time interval dt  by the vector 

dr = idq, + jdq ,  + kdq, = idx + j d y  + kdz (19) 

where dx, dy, and dz are the projections of the displacement vector onto the 
Cartesian axes. Similarly, the change in orientation is represented by the vector * 

d q  = idq, + jdq ,  + kdq, = idq,  + j d q ,  + kdcp, (20) 

where dq,, dcp,, and dq, denote projections onto the Cartesian axes. In the same 
way that D in equation 15 has a statistical interpretation in terms of the Einstein 
equation (equation l) ,  we shall find that each of the elements in the diffusion 
tensor D defined by equation 18 also has a statistical interpretation. 

B. An Isolated Spherical Particle.-The simplest possible system consists of a single, 
hard, spherical particle immersed in a quiescent hydrodynamic medium. Let us 
suppose that, during some small but finite time interval, the co-ordinates of the 
particle centre have moved from (x ,  y ,  z) to ( x  + Ax,y + Ay,z + Az). In the 
absence of any external forces, the mean-square Brownian displacements in the 
three directions are given by 

((AX),) = ((Ay)’) = {(Az)’) = 2DTA.t (21) 

* Unlike dr, dp is a vector only for infinitesimal displacements. 
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where DT is a scalar translational diffusion coefficient. For a sphere of radius a in a 
medium of Newtonian viscosity q, DT is given by the well-known Stokes-Einstein 
equation 

where cT is the translational friction coefficient. During the same time interval At, 
the Brownian sphere will also have rotated through angles Aqx,  AT,, and Aq,  about 
axes parallel to the x, y, and z directions, respectively. Mean-square displacements 
are given by 

where DR is the rotational diffusion coefficient: 

DR = kT/8qa3 (24) 

Comparing equations 22 and 24, we see that rotational motion decreases much 
more strongly with increasing particle size than does translational motion. 

In position-orientation space, the generalized Einstein equation has the form 

(AqiAqj> = 2DijAt (25) 

In matrix notation, the diffusion tensor D = [Di j ]  for a single sphere has non-zero 
elements only along the leading diagonal, i.e., 

The off-diagonal elements are all zero because each of the three translational and 
three rotational degrees of freedom is completely independent for a single 
spherically-isotropic particle: 

(AriArj> = <AriA(cpi) = (AcpiAcpj> = 0 (1 < i # j < 3) (27) 

C. An Isolated Non-spherical Particle.-Irrespective of the shape of a particle, the 
diffusion matrix [Di j ]  is always symmetric and positive-definite (i.e., D = Dt, 
where -f denotes the matrix transpose).* The 6 x 6 diffusion matrix in position- 
orientation space can be partitioned into four 3 x 3 submatrices: 

* A symmetric tensor (matrix) is a square matrix which is equal to its transpose. The franspose matrix is 
formed by interchanging rows and columns. A symmetric tensor T is positioe-definite if Y' T .  Y > 0 for any 
non-zero vector Y.  (See Appendix for summary of rules of tensor multiplication.) 
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D' Dct 
= LDc D' 

D' is a (symmetric) translational diffusion tensor of the form: 

It describes the translational Brownian motion of some point P rigidly fixed in the 
particle according to the equation 

(AriArj> = 2D::At (ij = 1,3) (30) 

where the superscript P on D$ now denotes the fact that, since a body rotates as 
it moves, the translational diffusion coefficient depends on the location of P. 
Analogously, the (symmetric) rotational diffusion tensor D' governs the rotational 
Brownian motion according to 

(AqiAcpj) = 2DijAt (ij = 1,3)  (31) 

And a coupling tensor D" describes the correlation between translational and 
rotational displacements: 

(AcpiArj) = 2Dc!At (ij = 1,3) (32)  

Again the superscript P on D$ denotes a dependence of the tensor on the 
location of point P. 

The values of D' and D" corresponding to two different points on the particle, P 
and Q, are related byI6 

where rpQ is the position vector from P to Q, and x represents the usual vector 
cross-product (see Appendix). Any rigid particle possesses a unique point 0, its 
centre of diffusion, for which D' is symmetric (i.e., Dco = Pot). The exact location 
of 0 is given by 

rw = [(TrD')/ - Or]-' E: DcQ (35) 

where TrD' represents the trace of tensor D' (the sum of terms on the leading 
diagonal, i.e., D; + D;, + Di3) .  The quantity / in equation 35 is the unit tensor 
(identity matrix) defined by 
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(36) 

The quantity c is a totally antisymmetric third-rank tensor (3 x 3 x 3) known as 
the Levi-Civita density; in matrix notation, E~~~ is defined by ~ 1 2 3  = ~ 3 1 2  = ~ 2 3 1  = 
1, ~ 1 3 1  = ~ 3 2 1  = ~ 2 1 3  = -1, and zero elsewhere. 

For a particle that is spherically isotropic,* Brownian diffusion is completely 
described by just two scalar coefficients DT and DR: 

(37) 0 '0  = DT/, D' = OR/, Dco = O 

But, even for a sphere, we note that D" vanishes only at the centre. Many globular 
proteins are roughly ellipsoidal in shape with diffusion tensors of the form: 

3 Dco = 0 (38) 
0 0 0% 

As with spheres and ellipsoids, so for a large class of particle shapes: at the centre of 
diffusion, translational and rotational motions are uncoupled, with corresponding 
fluxes, J' and J', given by 

(39) J' = - 0'' ( d p / d ~ ) ,  J' = - 0' (dp /d~p)  

A non-vanishing coupling tensor is associated with a screw-like behaviour of the 
diffusing particle. With biopolymers possessing helicoidal symmetry about a single 
axis (say the x-axis), the coupling of translational and rotational motions is 
described by a single scalar coefficient Dc defined byI6 

where the algebraic sign on the right of equation 40 depends on the handedness of 
the enantiomorph. Interesting academically, but apparently not biologically, is the 
class of isotropic helicoids,' 

which includes the spherical isotropic particle as a special case (Dc = 0). 

D. A Spherical Particle Near a Plane Surface.-Moving from the unbounded fluid 
medium, let us now consider the case of a spherical Brownian particle near a solid 
plane wall. Making the spatial environment of the particle asymmetric has its effect 

* In this special category of geometrical objects are the sphere and the five regular polyhedra (tetrahedron, 
cube, efc.). 
l 6  H. Brenner, J.  Colloid Interface Sci., 1967, 23, 407. 
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on the diffusion tensor D. If the x-axis passes through the particle centre 0 
perpendicular to the surface (see Figure l), diffusion in the x-direction is slower 
than in the y-  or z-directions (D\? < D:: = D\%, and depends on the distance I 
between 0 and the surface. At the same time, rotational diffusion about the x-axis is 
faster than rotational diffusion about the y-  or z-axes (D;l > D;2 = Dj,). The 
origin of these differences lies in a spatially-dependent slowing down of diffusive 
motion, translational, and rotational, due to hydrodynamic forces between the 
surface of the colloidal particle and the boundary wall (vide infra). In crude physical 
terms, we might say that the particle moves slower than it would do in an 
unbounded fluid because some extra thermal driving energy has to be used to push 
fluid from (or pull fluid into) the region between the particle and the surface. This 
extra work against the fluid resistance becomes greater with decreasing separation 

Y 

Figure 1 
displacement Az is positively correlated with the rotational displacement A(py 

Sphericalparticle with centre 0 at dislance 1 from a plane surface. The translational 

With the isolated sphere, translational and rotational Brownian motion were 
completely independent (see equation 37). This is no longer the case in the presence 
of the surface. For example, a positional displacement Az becomes positively 
correlated with an angular displacement Aq,,, and the correlation is total in the limit 
of the sphere touching the plane (/+a), when the particle can only move in a 
rolling motion. The single-particle diffusion tensor therefore has the following 
form: 
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with D,,  = D,,, D , ,  = D,,, D,, = D,, = - D 3 ,  = -D53. 

4 Hydrodynamics 
In connection with the Brownian movement of small particles, we are nearly always 
concerned with hydrodynamics at low Reynolds number. That is to say, viscous 
forces from local shearing motions of the fluid are assumed to predominate over 
inertial forces associated with acceleration of the fluid elements. Strictly speaking, 
inertial forces exist to some small finite extent in all moving systems, but they can be 
neglected for the systems considered here. 

A. Isolated Particles.-Frictional forces and torques exerted on a rigid 
macroscopic body are linearly related to translations and rotations by the friction 
tensor 5. This 6 x 6 matrix can be decomposed into a 3 x 3 translational tensor c', 
a 3 x 3 rotational tensor c', and a 3 x 3 coupling tensor <':I7 

(43) 

If we consider a point P on an isolated particle moving in an otherwise undisturbed 
fluid with rotational velocity o and translational velocity vp, the frictional force on 
the particle is given by 

where as before the superscript P denotes a dependence on the location of P.* The 
frictional torque about P is given by 

where <', like <", is position-dependent. Every isolated rigid particle has a unique 
geometrical point, 0, its centre of reaction, for which the coupling friction tensor is 
symmetric, i.e., 

(46) CEO = r o t  

* When the particle moves irrotationally, all points necessarily have the same translational velocity. Asfis 
also independent of where P is located, this means that c' has no position dependence. (Note the contrast 
here with 0' which is position-dependent.) 
l7 H. Brenner, G e m .  Eng. Sci., 1964, 19, 599. 
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But the centre of reaction is not necessarily located in the same place as the centre of 
diffusion. 

At low Reynolds number, diffusion and friction tensors are related by a 
generalized Stokes-Einstein equation 

D = kT5-l = kTp (47) 

where IJ. is the inverse oft;. In terms of submatrices, we have: 

The individual components of D and t; are related by18 

We note in equation 51 that D' and cc vanish at the same location. For a nonskew 
particle (GCo = 0), the centres of diffusion and reaction coincide exactly. For 
screwlike particles (cco # 0), it is shown by WegenerI8 that the centres of diffusion 
and reaction are generally in different places. 

There are just two scalar friction coefficients for spherically isotropic particles: 

For a sphere of radius a, they take the simple form 

ST = 67tqa, GR = 8nqa3 (53) 

consistent with equations 22 and 24 for DT and DR. In practice, it is found that 
translation-rotation coupling effects for a single particle are not too important (less 
than a few per cent), so long as the object has some symmetry elements.Ig Only for 
highly asymmetric particles (e.g., a half-turn of helix) is the effect very significant. 
With more than one particle, however, translation-rotation coupling is important 
even for spheres, as we shall see below. 

B. Boundary Conditions: Stick versus Slip.-The Stokes formulae for the 
translational and rotational coefficients of a spherical particle (equation 53) are 
implicitly based on so-called 'stick' ('non-slip') boundary conditions. That is, the 
relative tangential velocity component of fluid in contact with the rigid particle 
surface is taken as zero. In practice, it is found that stick boundary conditions are 
correct for large, solid, and impermeable particles immersed in a viscous medium. 

'' W. A. Wegener, Biopolymers, 1981, 20, 303. 
l9 J. M. Garcia Bernal and J. Garcia de la Torre, Biopolymers, 1980, 19, 751. 
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For a smooth spherical particle, at whose surface perfect slip occurs (e.g., a gas 
bubble), the friction coefficients are given by 

For a liquid drop of finite viscosity qi immersed in an unbounded continuum of 
viscosity qo, the value of cT lies between the pure slip and pure stick limits: 

In many real situations, the presence of surface-active agents makes the drop 
surface viscoelastic, in which case cT and cR approach the non-slip limits.20 

Protein molecules are relatively small, non-spherical, flexible, and partly 
permeable to solvent; and so one might at first sight presume that rigid-sphere, stick 
boundary conditions would be out of the question. This is fortunately, however, not 
the case. In fact, the hydrodynamic properties of many protein molecules are 
adequately represented by effective hard-sphere models, and the roughness of the 
macromolecular surface usually means that stick boundary conditions are 
appropriate. Nevertheless, it needs to be pointed out that, as over half the water in 
contact with the protein surface is indistinguishable experimentally from pure 
solvent, it has been suggested2' that a large proportion of the slip surface (sic) is 
between the vicinal water molecules and the protein, and not outside the first 
monolayer as commonly assumed. 

Globular proteins are somewhat porous due to imperfect packing of subunits 
and topological surface irregularities. One possible wayt2 of mimicing porosity is 
to relax partially the stick condition through a 'slipping length' defined by 

where u, is the tangential velocity component, and du,/dn is its derivative normal to 
the surface. The effective hydrodynamic radius aeff of a sphere with this boundary 
condition is 

where 5 -, co in the pure-slip limit (cf: qi = 0 in equation 55). According to 
Wolynes and McCammon,22 the ratio 5/a is typically 0.15 for a porous protein. 

Summarizing, then, we should treat stick boundary conditions as the norm, with 
full slip conditions only considered for species as small as solvent molecules, simple 
ions, or polymer  segment^.^ Use of semi-empirical partial-slip boundary 
conditions has some intuitive appeal, but it is not rigorous except at a fluid-fluid 
interface. With solid particles, any relaxation of normal stick boundary conditions 

2o V. G. Levich, 'Physicochemical Hydrodynamics', Prentice-Hall, Englewood Cliffs, N.J., U.S.A., 1962. 

2 2  P. G. Wolynes and J. A. McCammon, Macromolecules, 1977, 10, 86. 
23 P. G. Wolynes and J. M. Deutch, J. Chem. Phys., 1976,65,450, 2030. 

F. M. Richards, Ann. Rev. Biophys. Bioeng., 1977, 6, 151. 
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is really an admission that continuum hydrodynamic theory has broken down for 
the problem under investigation. 

C. Hydrodynamic Interactions between Particles.-Consider two freely-rotating 
particles 1 and 2 acted on by forces F, and F, respectively. The particle velocities 
are given by 

where pij ( i j  = 1,2) are translationalpair mobility tensors. The tensors pi and pi2 
are equivalent to the single-particle tensors described above; p:, and pil are new 
tensors arising specifically from the hydrodynamic pair interaction. For a pair of 
identical spheres with centres at separation r, the tensors have the general form 

pij(r) = aij(r) (rr/r2) + Pij(r) [I - (rr/r2)] (60) 

where rr denotes the 3 x 3 dyad corresponding to vector r, and afj(r) and p:j(r) are 
scalar analytic functions of r = Irl. Mobility expressions are known24 as a function 
of r to high accuracy with stick boundary conditions. The functions at and p' can be 
expanded as series in powers of (a/r),24 but at very close separations the series 
converge slowly and asymptotic expressions must be used instead.' 

The functions aij(r) and pij(r) 

a:,{r) = 

p:j(r) = 

in the form25 

Values of the expansion coefficients [a," (= at2), a t2  (= a,"), b," (= bi2)  
and bt2 (= b:')] are listed in Table 1 up to n = 5.  The leading selJlterms, a;' 
and b; ', are simply the reciprocals of the single-particle friction coefficients 
mentioned previously. Higher order self-terms represent the influence of the second 
particle on the single-particle friction coefficient of the first. Notice that some of the 
coefficients are exactly zero. 

It is the cross-terms which are most important in Brownian kinetics, since these 
determine the relative motions of the diffusing species. Under stick boundary 
conditions, the leading cross-terms, aA2 and bA2, combine to give what is 
commonly described in hydrodynamics as the Oseen tensor:26 

D\2 = kTpi2  = (kT/8nqr)[/ + (rr/r2)] (63) 

24 D. J. Jeffrey and Y .  Onishi, J.  Fluid Mech., 1984,139,261. R. Schmitz and B. U. Felderhof, Physica, 1982, 

2 5  R. B. Jones and G. S. Burfield, Physica, 1985, 133A, 152. 
2 6  C. W. Oseen, 'Hydrodynamik', Akademische Verlagsgellschaft, Leipzig, 1927. 

113A, 90, 103; 1982, 116A, 163. 
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Table 1 
boundary conditions 

Mobility expansion coeflcients a? and b? (n  = 0,5) for (A) stick and (B) slip 

n 
0 
1 
2 
3 
4 
5 - 

a: ’ a,! 
A B  A B  
213 1 1 1 

-5/2 - 1  0 0 
1113 - 1  2512 2 
7 - 1  - 5  6 

0 0 -213 0 

16713 - 5  -13112 14 

b,! ’ 
A B 
213 1 
0 0  
0 0  

-17124 118 
-516 115 

-2318 114 

b,! ’ 
A B 
1/2 1/2 
113 0 
0 0 
0 0 
0 0 

189164 3/16 

In the original derivation of equation 63, interacting elements were represented as 
point sources of friction; better approximations can be regarded as allowing for the 
effect of finite particle size on the hydrodynamic flow field. Extension of equation 63 
to include expansion coefficients a:’ and biz  leads to the equation of Rotne and 
Prager: ’ ’ 

D:’ = (kT/8qr)([/ + (rr/r2)] + (2a2/3r2)[/ - 3(rr/r2)]) (64) 

While the Rotne-Prager tensor is a better approximation than the Oseen tensor, 
both are unsatisfactory at close separations ( r  + 2 4 .  They overestimate the 
tendency of particles to move towards (or away from) one another along the line of 
centres; equation 63 is out by a factor of 10 for r - 2.01~. In the limit r +  2 4  the 
component * of 0:’ along the line of centres actually vanishes (the relative friction 
coefficient diverges to infinity). This means that, in the absence of colloidal 
attractive forces, perfectly hard spheres can never touch (coagulate) in a continuum 
solvent! The vanishing relative diffusion coefficient is due to very large velocity 
gradients in the gap between spheres with stick boundary conditions. The 
divergence in the friction coefficient with slip boundary conditions is much weaker, 
having the form of a logarithmic ~ingularity.’~ 

With more than two particles, things get more complicated, but the results can be 
expressed in a formally similar way. Mazur and van Saarloos have givenz8 a 
general scheme for an arbitrary number of spheres to any order in (a/r). Explicit 
expressions to order ( ~ / r ) ~  are obtained for the mobility tensors, rotational as well 
as translational, and to this order three- and four-body interactions are included. 
The dominant contributions to translation from clusters of N spheres ( N  2 2) are 
of order r43N- 5) .  As with the two-sphere case, certain powers of (a/r)  are completely 
absent [e.g., there is no term of order (a/r)’ in the expression for p’]. 

D. Translation-Rotation Coupling.-When several bodies are immersed in a 

* It is probably worthwhile emphasizing here that subscripts on D‘,2 refer to particles 1 and 2, and not, as 
earlier (see equations 26 and 29), to directional components of the diffusion matrix. 
2 7  J. Rotne and S. Prager, J.  Chem. Phys., 1969,50, 4831. 
2 8  P. Mazur and W. van Saarloos, Physica, 1982, 115A, 21.  
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hydrodynamic medium, the frictional forces and torques on each one of them 
depends on the translational and rotational movements of all the others. 
Generalizing equations 44 and 45 to an N-sphere system, the frictional force and 
torque on particle i is given by 

N 
f; = -c ( g j  - Y j  + 4fj ' W j )  

'ti = -1 (q;j v j  + 4:j W j )  

J 

N 

i 

where the superscripts t, c, and r denote hydrodynamic couplings between 
translation and translation, translation and rotation, and rotation and rotation, 
respectively. As with the single particle (equation 48), the combination of friction 
submatrices leads to a grand friction matrix related to grand mobility and diffusion 
matrices:29 

Individual components of [Di.i] and [L i j ]  are related by sets of equations equivalent 
to those connecting the single-particle diffusion and friction tensors (equations 49- 
5 1). 

The leading cross-terms in the diffusion tensor for a pair of rigid spheres are as 
follows: 

We note that interparticle translation-rotation coupling (equation 69) is of shorter 
range than rotation-rotation coupling (equation 70), but longer range than 
translation-rotation coupling (equation 68). With slip boundary conditions, the 
particles rotate freely, and so we have D:2 = Di2 = 0. 

E. Particles Near a Plane Surface.-Since hydrodynamic interactions are of long 
range in comparison to particle size, the properties of particulate systems are 
strongly affected by boundary walls. The problem of one sphere in the vicinity of a 
plane surface is a limiting case of the two-sphere problem. It therefore provides a 
convenient system for testing the theories of hydrodynamic interaction in the 
laboratory. Recently, Ambari and co-workers have measured 30 the magnitude of 
the modified Stokes forcef, exerted on a macroscopic sphere (a = 0.435 mm) with 
centre 0 kept in magnetic levitation at a fixed distance lfrom the surface (see Figure 

29 D. W. Condiff and J. S. Dahler, J.  Chern. Phys., 1966,44, 3988. 
30 A. Ambari, B. Gauthier-Manuel, and E. Guyon, J.  Fluid Mech., 1984, 149, 235. 
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2) using an optical feedback system. As the sphere approaches the wall with speed 
u,, there is a change in frictional force given by 

f, = - 6 q a u , 6 ( ~ )  (71) 

where &a = 1 - a is the surface-to-surface separation. Within the experimental 
uncertainties, the data are found to agree exactly with theoretical equations derived 
for the cases of smal131 and large32 separations: 

(72) 1 / ~  - (lns)/5 + 0.9712 + . . . (E --+ 0)  
1 + 9/8(1 + E )  + .. .  (E  % 1) 

The expression for close separations comes from lubrication theory,' and the long- 
range formula is an Oseen-type representation. With the macroscopic sphere 
studied e~perimentally,~' the smallest value of E corresponded to a surface-to- 
surface separation of ca. 8 pm, well beyond the effective range of London/van der 
Waals attractive forces. (With particles of colloidal size, of course, this would not be 
the case.) At infinitesimally close separations, the frictional force diverges to infinity 
and the corresponding diffusion coefficient vanishes. 

f x 

Figure 2 Macroscopic sphere of radius a with centre 0 at distance 1 from a plane surface. As 
the sphere approaches the wall at speed v,., it experiences a frictional force f,. at surface-to- 
surface separation &a 

There is less viscous resistance parallel to a plane wall than perpendicular to it. 
For a sphere moving parallel to a plane surface with stick boundary conditions, the 
frictional force& is related to the speed uy by33 

f, = - 67cqavy/[1 - (9a/161) + (a/21)3 - . . .] (73) 
31 R. G. Cox and H. Brenner, Chem. Eng. Sci., 1967, 22, 1753. 
32 H. A. Lorentz, Abhandl. Theor. Phys. (Leipzig), 1907, 1, 23. 
3 3  H. Faxen, Arkiv. Mat. Astron. Fys., 1923, 17, No. 27. 
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The particle rotates with an angular velocity 

0, = (3vY/32a)(a/l)* + . . . (74) 

the direction being the same as that for simple rolling along the wall. We see from 
equation 74 that the strength of single-particle hydrodynamic translation-rotation 
coupling drops off rapidly with the particle-surface separation. 

Expressions have recently been presented 34 for an arbitrary number of spheres 
in the vicinity of a plane wall. The main point to note is that, for the same surface-to- 
surface separation, the hydrodynamic effect of the wall is considerably greater than 
that of another spherical particle. And even more so for a cluster of particles 
between two plane walls.13 

5 Brownian Dynamics Simulation 
Just as the motion of atoms in a simple liquid can be simulated by molecular 
dynamics, the motion of particles in a colloidal dispersion can be computed 
numerically by Brownian dynamics. (In the purely hydrodynamic regime, where 
there is no Brownian movement, the term Stokesian dynamics * seems appropriate.) 

A. Algorithm of Ermak and McCammon.-In a system with colloidal inter- 
particle forces, the Langevin-type equation of translational motion has the 
form3' 

where mi is the particle mass associated with index i, ui is the velocity component in 
direction i, Fi is the sum of external and interparticle forces acting in direction i, and 
the sum is over all 3N translational degrees of freedom (cf: the one-dimensional 
Langevin equation, equation 11).  The right-hand-side of equation 75 is a sum of 
three terms: a frictional force, a systematic force, and a stochastic force. The 
stochastic term depends on a set of coefficients {a: j} ,  defined by 

and a set of random numbers {x j>  with a Gaussian distribution, 

(xi(0)xj( t ) )  = 26ij6(t) (77) 

where ?jij  is the Kronecker delta (= 1 for i = j ,  otherwise zero). 

* The author first heard this term used in public by Professor J. F. Brady at the Euromech symposium in 
Cambridge in April 1985 (see G. Bossis and J. F. Brady, J.  Chem. Phys., 1984, 80, 5141). 

34 C. W. J. Beenakker, W. van Saarloos, and P. Mazur, Physica, 1984, 127A, 451. 
3s J. M. Deutch and I. Oppenheim, J. Chem. Phys., 1971,54, 3547. 
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A Brownian dynamics algorithm based on equations 75-77 was derived by 
Ermak and M ~ C a m m o n . ~ ~  Particle displacements are given by 

3N 3N 

Ari = C (dD:'j/&j)At + (kT)-' C DiFYAt + Ri(Dl'j,At), (i = 1,3N) (78) 
j =  1 j =  1 

where Ar = ri - ro is the change in particle co-ordinate during time-step At, Ri is 
the stochastic displacement in direction i, and superscript 0 denotes that the 
quantity is evaluated at the beginning of the step. It is important to note that in the 
algorithm defined by equation 78 instantaneous particle velocities are not specified 
as such. Although the interval At is long compared with the characteristic time 
associated with the solvent molecule motion, it must be short enough for quantities 
Dli and Fj to be effectively constant during the simulation time-step. The stochastic 
displacements are calculated from the set of equations: 

I 

Ri(A,t) = 1 0 i j X j  
j =  1 

( X i )  = 0, (XiXj)  = 26ijAt (82) 

Because of the square root in equation 80, the calculation of uij from 0:: is 
generally the most time-consuming part of the simulation. 

The application of the algorithm of Ermak and McCammon to a particular 
problem requires specification of the configuration-dependent non-hydrodynamic 
forces { Fj)  associated with the various physico-chemical interactions between the 
Brownian particles. For instance, with electrostatically-stabilized colloidal 
particles, the contributions to {Fj>  come from derivatives of the DLVO potentials 
of mean force at the appropriate pair  separation^.^^ If a particle is also subject to an 
external force (e.g., gravity), this is added in as well. A DLVO-type potential is 
suitable for describing the spherically-symmetric part of the protein-protein 
interaction, but there may also be asymmetric contributions to the protein 
potential arising, say, from highly charged, localized patches on the folded 
macromolecular surface. Once spherical symmetry is lost, particles are subject to 
torques as well as forces, which means that we must also consider the rotational 
Brownian motion (see next section). 

There are some important technical differences between molecular dynamics and 
Brownian dynamics simulations. Molecular dynamics is based on Newton's 
equations of motion: energy is therefore conserved, and trajectories are time- 
reversible. On the other hand, a stochastic equation of motion like equation 78 

36 D. L. Ermak and J. A. McCammon, J .  Chem. Phys., 1978, 69, 1352. 
37 J. Bacon, E. Dickinson, and R. Parker, Faraday Discuss. Chem. Soc., 1983, 76, 165. G. C. Ansell, E. 

Dickinson, and M. Ludvigsen, J.  Chem. Soc., Faraday Trans. 2, 1985, 81, 1269. 
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neither has a definite solution nor does it conserve energy. So, whereas total energy 
fluctuations can be used to monitor the efficacy of a molecular dynamics 
calculation, there is no such consistency check with Brownian dynamics. To ensure 
that particle trajectories are sufficiently accurate for the purpose in question, all one 
can do is demonstrate that average statistical properties are independent of the size 
of the integration time-step. In both types of simulation, contributions to forces 
( F j }  can be truncated at pair separations beyond a certain ‘cut-off’ distance. 
However, in Brownian dynamics, because the hydrodynamic interactions are of 
long range, it is difficult to justify a particular ‘cut-off’ distance beyond which they 
may be neglected. 

B. A Generalized Algorithm.-It is straightforward to generalize the above 
algorithm to include rotational Brownian motion and translational-rotation 
coupling. Proceeding along the lines of equations 65 and 66, one can write down a 
set of translational and rotational Langevin equations:38 

In equation 84, Ii is the moment of inertia associated with index i, and Ti is the sum 
of external and interparticle torques acting in direction i. The equations 83 and 84 
are interdependent since they share the same set of aij coefficients defined by 

Translational and rotational motions are only fully decoupled when <:j = 0 for all 
pairs of particles in the system. 

Let us now switch to a set of generalized co-ordinates qi ( i  = 1,6N) in 6N- 
dimensional position-orientation space (see equations 19 and 20). Combining 
equations 83 and 84 into a single expression, we get a generalized Langevin 
equation from which can be derived 39 a generalized ‘moving-on’ routine: 

6N 6N 
Aqi = (dD$/8qj)At + (kT)-’ 1 D$F:At + Ri(D$,Al) ( i  = 1,6N) (86) 

j= 1 j= 1 

where Aqi = qi - qo is the change in generalized co-ordinate during At, and Fi is 
a generalized force component in direction i. Indices i a n d j  from 1 to 3N refer to 
translation; those from 3N + 1 to 6N to rotation. For spheres of uniform surface 
roughness, Dij is independent of orientation, and so we have 

38 P. G. Wolynes and J. M. Deutch, J.  Chern. Phys., 1977, 67, 733.  
j9 E. Dickinson, S. A. Allison, and J. A. McCammon, J.  Chem. SOC., Faraday Trans. 2 ,  1985,81, 591. 
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In a system with rotational Brownian motion and translation-rotation coupling, 
the stochastic displacement terms are given by equations 79-82 as before, but 
Di; is replaced by the grand diffusion tensor D$. 

C. Choice of Hydrodynamic Approximation.-A few words seem appropriate on the 
forms to be adopted for pij (and therefore Dij) in a simulation of spherical Brownian 
particles. 

The Oseen and Rotne-Prager approximations, equations 63 and 64, are 
computationally convenient, but they break down at close separations (Y --+ 2a) 
where lubrication theory must be used. Fortunately, in many systems of realistically 
modelled Brownian particles, the problem is less severe than with simple hard 
spheres; this is because pairs of particles are in fact never allowed to get very close 
due to the influence of electrostatic interparticle repulsive forces. One disadvantage 
of crude pairwise-additive Oseen hydrodynamics is that it sometimes leads to a N- 
particle diffusion tensor that is not positive-definite. This is disastrous from the 
simulation standpoint, since it implies that the stochastic weightings from 
equations 79 and 80 are mathematically complex, and therefore physically absurd. 
One way round the difficulty is to use3’ a truncated Oseen interaction with pi2 = 0 
for r > rC, where the effective cut-off distance rc is a decreasing function of the local 
particle concentration. The Rotne-Prager tensor is well-behaved, insofar as it does 
not suffer from non-positive-definiteness. And, like the Oseen tensor, it gives a 
computationally convenient divergenceless diffusion tensor (V Dij = 0), so that 
gradient terms in equations 78 and 86 need not be evaluated, thus saving some 
calculation time. 

As mentioned previously, explicit expressions for pij are available2* to order 
( ~ / r ) ~ ,  but their widespread use within Brownian dynamics simulations is likely to 
be restricted owing to the computational expense of having to sum over all groups 
of 3 and 4 particles for each time-step. In any case, recent c a l ~ u l a t i o n s ~ ~  cast doubt 
on whether in practice expressions to order (a/r)’ give results in multi-particle 
systems that are any more reliable than those to order ( a / ~ ) ~  (Rotne-Prager 
approximation). One compromise solution41 is to use an effective hydrodynamic 
pair tensor which allows for multi-body interactions implicitly via one or more 
empirical screening constants which depend on the local particle concentration. 
The idea here is that instead of having a sharp hydrodynamic c ~ t - o f f , ~ ~  one has a 
more gradual screening of the normal pair interaction. We note, however, that the 
concept of hydrodynamic screening is only strictly applicable to immobile particles 
immersed in a viscous medium.42 

The justification for using simple hydrodynamic approximations in many 
Brownian dynamics problems comes from the fact that the rate processes are often 
only weakly affected by changes in the hydrodynamic expressions. Only when 

40 G. D. J. Phillies, J. Chem. Phys., 1984, 81, 4046. 
41 I. Snook, W. van Megen, and R. J. A. Tough, J. Chem. Phys., 1983,78, 5825. 
42 C. W. J. Beenakker, Faraday Discuss. Chem. SOC., 1983, 76, 240. 
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particles spend most of their time very close together (r  - 2a 4 a) does one need to 
be particularly careful about the exact form of the hydrodynamic i n t e r a ~ t i o n . ~ ~  

6 Protein Dynamics 
So much for the principles; now to the practice. Most of what follows is forward- 
looking: its aim is to point out what seems feasible in connection with the 
application of Brownian dynamics simulation to protein diffusional motion. In the 
case of the enzyme-substrate problem, some progress has already been made, but, 
for the most part, the field is still virgin territory. The topics described below are not 
meant to form a complete list. They just represent a few relevant and interesting 
problems about which the author has become recently aware. The unifying theme is 
Brownian dynamics with hydrodynamic interactions. 

A. Enzyme-Substrate Encounters.-The enzyme-substrate combination is just 
one of several types of ligand-receptor pairs involved in biological action.43 In the 
simplest possible model, enzyme and substrate molecules are represented as 
spherical Brownian particles with ‘reactive patches’ on parts of their surfaces. The 
overall rate of many biochemical processes is determined by the kinetics of an initial 
diffusional encounter between enzyme and substrate molecules, and the reaction is 
said to be ‘diffusion controlled’. Amongst the factors that can affect the rate of 
reactive binary collision are the charge distributions on both molecules, the 
hydrodynamic interactions between the particles, the orientational dependence of 
reactivity, and intramolecular structural fluctuations at and near the ‘active site’. 
Some limited progress has been made in incorporating these effects into analytic 
kinetic but it seems likely that the detailed distinguishing features of 
complicated biochemical processes will be amenable only to numerical simulation 
methods. An appealing feature of the simulation approach is the ability to make 
steady and systematic progress by successively refining the assumed model. 

Let us consider the reaction sequence 

E + S ES 5 products (88) 

where E and S stand for enzyme and substrate respectively, and k, k’ and k” are rate 
constants. Under steady-state conditions (d[ES]/dt = 0), the transformation rate 
into products is described by an effective rate constant 

keff = kk”/(k‘ + Id’) (89) 

We have keff z k for a diffusion-controlled reaction (k” + k’). When E and S are 
spherically-symmetric, non-interacting particles, the reaction is described by the 
bimolecular Smoluchowski rate constant45 

k,  = 4xr,D (90) 

4 3  J. A. McCammon, S. H. Northrup, and S. A. Allison, Com. Molec. Cell. Biophys., in press. 
44 D. F. Calef and J. M. Deutch, Ann. Rev. Phys. Chem., 1983, 34,493. 
45 M. V. Smoluchowski, Phys. Z., 1916, 17, 557. 
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where D is a diffusion coefficient, and re is an encounter distance (roughly equal to 
the sum of particle radii). Putting in some allowance for hydrodynamic effects, 
together with a general centrosymmetric potential of mean force u(r) between E and 
S, leads to the modified Smoluchowski expre~sion,~ 3*46 

where D is now a function of the pair separation r (equivalent to the component of 
the pair diffusion tensor D:2 along the line of centres). 

Equation 91 represents more-or-less the limit of the analytic approach. When the 
E-S interaction is more complex than that assumed above, the rate constant must 
be evaluated numerically by averaging over diffusional trajectories of the substrate 
in the field of a fixed enzyme target.43 To avoid having to simulate substrate paths 
which wander well away from the enzyme, the diffusion space around E is divided 
into two regions4' (see Figure 3). In the outer region ( r  > p) ,  E and S are far enough 
apart for diffusion to be described adequately by equation 91; in the inner region 
(r  < p) ,  however, interactions have a more complicated orientation dependence, 
and therefore must be handled numerically. If each Brownian collision of S with the 
active site on E leads to reaction, then it can be shown47 that the rate constant is 
given by 

where k ( p )  and k ( q )  are the values of k from equation 91 with re = p and re = q, 
respectively. The quantity a represents the probability that a substrate molecule, 
starting at r = p ,  and free to diffuse in inner and outer regions, will react before 
reaching r = q. In the actual simulation, trajectories begin at r = p and terminate 
on reaction or at r = q. From the fraction of events leading to reaction is calculated 
the bimolecular rate constant k.  Detailed analysis of particle trajectories provides 
information about the reaction mechanism, i.e. whether or not S is 'steered' into 
productive collisional orientations during the diffusional encounter. 

To take a particular example, McCammon and c ~ - w o r k e r s ~ ~ * ~ ~  have initiated a 
series of simulations of increasingly realistic models of the diffusion-controlled 
reaction of superoxide (09 catalysed by the enzyme superoxide dismutase. The 
enzyme molecule was represented as a sphere of diameter 6 nm having two small 
reactive patches on opposite sides covering ca. 1& of the total surface area. A set 
of five charges within the model enzyme particle was used to produce an 
electrostatic field with monopole, dipole, and quadrupole components equivalent 
to those generated by all 76 charged groups on the real protein. The Oimolecule 
is modelled as a sphere of diameter 0.3 nm carrying a unit charge. Rate constants 

O6 S. H. Northrup and J. T. Hynes, J. Chem. Phys., 1979,71, 871. 
O7 S. H. Northrup, S. A. Allison, and J. A. McCammon, J.  Chem. Phys., 1984,80, 1517. 
48 S. A. Allison and J. A. McCammon, 1985,89, 1072. 
49 S. A. Allison, G. Ganti, and J. A. McCammon, Biopolymers, 1985, 24, 1323. 
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Figure 3 Simulation diffusion space for the encounter between enzyme E and substrate S. 
Distances p and q are the radii of the inner and outer diffusion regions (see text). The shaded 
portion of E denotes the ’active site’ 

calculated from equation 92 were based on averages over several thousand 
trajectories withp = 30 nm and q = 50 nm, and the results were found to reproduce 
successfully the qualitative experimental features of the enzyme-catalysed 
reaction.” Using Debye-Hiickel theory to allow for electrostatic screening, it is 
calculated in agreement with experiment that the rate constant first increases, and 
then decreases to a plateau, as the ionic strength is increased (i.e. as electrostatic 
interactions become of shorter effective range). It is postulated43 that the initial 
increase in k is due to screening of long-range E-S repulsion, whereas the 
subsequent decrease arises from screening of the shorter-ranged non-central forces 
which act to steer the substrate into the active site. 

The above results for 0, + superoxide dismutase refer to simulations in 
which hydrodynamic interactions were neglected altogether (DI2 = 0). Using the 
Oseen tensor with slip boundary conditions,* it has been that including 
hydrodynamic interactions can lead to a reduction in simulated rate constant of ca. 
30% in the absence of E-S attractive forces. In a separate Brownian dynamics 
simulation of encounters between a spherical enzyme particle and a dumbell-dimer 
substrate particle using a constraints algorithm (see later), it was found 5 2  that the 
presence of hydrodynamic interactions does not much affect the steering 
enhancements, but does lead to a fairly uniform decrease in the overall reaction 
rate. As the structural complexity of enzyme and substrate molecules increases, it is 
clear that the reaction kinetics is increasingly affected by orientational 
considerations, as determined by the rotational Brownian motion and (with stick 
boundary conditions) the coupling between translational and rotational 
motions. 
* With a small substrate ion of solvent molecule dimensions, as is the case here, anything other than slip 
boundary conditions would seem inappropriate (see re$ 23 and 51). 
50 A. Cudd and 1. Fridovich, J. Biof. Chem., 1982,257,11443. E. D. Getzoff, J.  A. Tainer, P. K. Weiner, P. A. 

5 1  R. Zwanzig and M. Bixon, Phys. Rev. A ,  1970, 2, 2002. 
5 2  S. A. Allison, N. Srinivasan, J. A. McCammon, and S. H. Northrup, J. Phys. Chem., 1984, 88, 6152. 

Zollman, J. S. Richardson, and D. C. Richardson, Nature (London), 1983, 306, 287. 
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B. Proteins at Electrode (and Related) Surfaces.-Protein electrochemistry offers 
the opportunity for controlled electronic communication with a wide range of 
biochemical processes. Using enzymes with redox-active sites, there is the 
possibility of converting electron movement into specific substrate transformations. 
The combination of immobilized glucose oxidase and a graphite electrode, for 
instance, has potential application in the amperometric determination of glucose in 

Proteins appear to adsorb irreversibly at both synthetic and biological surfaces, 
and it has long been held the view that reversible electrochemistry involving 
proteins is not possible at conventional electrode surfaces. But, nevertheless, it is 
knowns4 that reversible protein adsorption can occur if the protein is rigid and the 
surface is hydrophilic, conditions which ought to be fulfilled in many 
electrochemical situations involving redox proteins. In fact, recent work with 
cytochrome c at a gold electrode has shown” that ‘good’ electrochemistry is 
promoted in the presence of certain bifunctional organic compounds at the 
electrode surface. Cytochrome c is an example of a robust low-molecular-weight 
globular protein whose biochemical function is to carry electronic charge between 
the catalytic and energy transduction sites on the membrane of an organism. 
Efficient kinetics of electZon transfer depends on the establishment of relatively 
long-lived, yet freely reversible, interactions of the protein, in uiuo with its 
physiological redox partners, and in vitro with the electrode surface. 

As a specific example, let us consider the conversion offerrocytochrome c (A) to 
ferricytochrome c (B) at a rotating disc ele~trode.’~ In the limit of fast mass 
transport, the reaction is represented by the scheme 

blood. 

where k, is the rate of adsorption of reduced and oxidized forms, k, and k, are the 
potential-dependent rate constants for the forward and backward electron-transfer 
reactions, k, is the rate of desorption of reduced and oxidized forms, and p is the 
areal concentration of adsorption sites on the modified electrode. For reaction at a 
positive gold electrode (k, % k,), values of the kinetic parameters are estimated 5 6  

to be: k, = 3 x 10-4 m s-’, k: = 50 s-’, k, = 50 s-l, and p = 1.2 mol m-2. 
Reversible protein binding enhances the overall rate of the electrode reaction at the 
modified electrode, but the reaction is very slow at the unmodified electrode. The 
importance of the chemical nature of the electrode surface in inducing reversible 
binding was demonstrated 5 7  by comparing electrochemistry at the polished ‘edge’ 
surface of pyrolytic graphite with that at the freshly-cleaved ‘basal plane’. 
Cytochrome c electrochemistry at the hydrophilic edge is well-behaved, but at the 
hydrophobic basal plane it is essentially irreversible. ’ 
5 3  A. E. G. Cass, G. Davis, G. D. Francis, H. A. 0. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. 

54 J. Lyklema, Colloids SurJ, 1984, 10, 33. 
5 5  P. M. Allen, H. A. 0. Hill, and N. J. Walton, J. Electroanal. Chem., 1984, 178, 69. 
56 W. J. Albery, M. J. Eddowes, H. A. 0. Hill, and A. R. Hillman, J. Am. Chem. Soc., 1981, 103, 3904. 
5 7  F. A. Armstrong, H. A. 0. Hill, and B. N. Oliver, J. Chem. Soc.. Chem. Commun., 1984, 976. 

Scott, and A. P. F. Turner, Anal. Chem., 1984, 56, 667. 
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To simulate the redox protein + electrode problem by Brownian dynamics, one 
might proceed as follows. Assume that the redox protein is spherical (diameter - 4 
nm) and has two ‘patches’ on its surface: one for electron transfer (patch PE), the 
other for electrostatic binding (P,). Describe the protein interaction with the 
surface as a sum of (a) a long-range, centrosymmetric, screened electrostatic 
interaction and (b) a short-range, specific interaction between protein patch P, and 
binding sites SB on the surface (see Figure 4). Electron transfer is deemed to occur 
when protein patch P, gets within some distance 6 of the surface. Trajectories can 
be started with the particle centre at a distance 1 = p from the surface, and 
terminated upon reaction or when 1 2 q. The protein model just described can be 
thought of as a crude representation of, for instance, spinach plastocyanin, a 
photosynthetic ‘blue’ copper protein, much of whose net negative charge (at neutral 
pH) is taken to be conservatively localized at the side of the molecule.58 [By way of 
contrast, mitochondria1 cytochrome c has an overall positive charge located in close 
proximity to the electron-transferring haem edge (i.e., for this protein P, and P, are 
coincident).] As far as the surface binding sites are concerned, these could easily 
represent positively-charged domains of stable chromium(rxx) complexes, since it 
has been shown58 that, even at low background electrolyte concentrations (< 0.01 
mol dm-3), a chromium-modified graphite electrode is active towards plastocyanin. 
A reasonable value for the electron-transfer distance 6 probably lies in the range 
0.5-1.5 nm. 

Figure 4 Representation of spherical redox protein P in vicinity of plane electrode surface with 
binding sites S,. The two patches on P are associated with electron transfer (PE)  and speciJic 
electrostatic binding (PB). The distances p and q are equivalent to the same quantities in Figure 3 

As well as giving rate data, a Brownian dynamics simulation along the lines of 
that described above could be used to determine the importance of translation- 
rotation coupling effects as the redox protein diffuses at the interface. It is well- 
k n ~ w n ~ ’ - ~ ’  that rates of diffusion-controlled biological processes are faster in two 
dimensions than in three. In diffusion towards a small target of diameter d within a 

F. A. Armstrong, P. A. Cox, H. A. 0. Hill, and A. A. Williams, J.  Chem. Soc., Chem. 
Commm., 1985, 1236. 
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large space of dimensionality n and diameter d,, Adam and Delbriick have 
expresseds9 the time to capture as 

where the function f,(d,/d) depends on the dimensionality n. For d,/d >> 1, f, is 
linear in d,/d for n = 3; it has the form ln(d,/d) for n = 2; and it is independent of 
d,/d for n = 1. So, for a constant diffusion coefficient D, there is a marked 
enhancement on going from n = 3 to n = 2, but little change in going from n = 2 
to n = 1. To permit protein motion on a one- or two-dimensional biopolymer 
surface, the forces between protein and surface must be strong enough to guarantee 
adsorption, but weak enough to enable the molecule to diffuse. In this connection, 
small conformational fluctuations may play a role in the sliding of enzymes on the 
surface of linear or planar biopolymers.61 

There are clearly similarities between diffusional processes at electrode and 
membrane surfaces. The electrostatic aspects of redox-protein binding to a 
negatively charged membrane surface has been demonstrated in a study62 of the 
oxidation kinetics of cytochrome c2 by bacterial photosynthetic reaction centres in 
unilamellar phosphatidylserine vesicles. In NaCl solution of ionic strength 0.1 mol 
dm-3 or less, the kinetic data suggest that the protein is restricted to the surface of a 
single vesicle, and encounters reaction centres by two-dimensional diffusion. The 
retarded oxidation rate at low electrolyte concentrations suggests that electrostatic 
interaction between the positive haem-cleft face of the protein and the negative 
membrane is sufficiently strong to restrict protein mobility. With increasing ionic 
strength, however, mobile counter-ions shield the electrostatic interaction, and so 
the protein diffuses more rapidly, though still mainly across the surface of the 
vesicle. Above 0.1 mol dm-3 NaCl solution, there is little protein-membrane 
association, and, since the binding regions are oppositely charged, the reaction rate 
falls-as it also does in solution, and in neutral phosphatidylcholine vesicles.62 

The mechanism of protein diffusion at a membrane or electrode surface will 
depend on the nature of the protein-surface interaction. If the protein is only 
weakly bound, one would expect a ‘hopping’ mechanism. With stronger binding, a 
‘rolling’ or ‘sliding’ mechanism would be more likely, the former being favoured by 
non-specific electrostatic protein-surface interactions, and the latter by specific 
interaction with a mobile entity at the interface. From equation 74, we note that the 
separation between protein and surface must be about one solvent molecule 
diameter (- 0.3 nm) or less for there to be appreciable translation-rotation coupling. 

C. Antibody Mobility and Antigen Binding.-Animals react adaptively against 
foreign bodies (‘antigens’) by synthesizing specific neutralizing agents (‘antibodies’). 

5 9  G. Adam and M. Delbriick, in ‘Structural Chemistry and Molecular Biology’, ed. A. Rich and N. 

6o  F. W. Wiegel and C .  DeLisi, Am. J.  Physiol., 1982, 243, R475. 
6 1  E. Katchalski-Katzir, J. Rishpon, E. Sahar, R. Lamed, and Y. I. Henis, Biopolymers, 1985, 24, 257. 
62 R. E. Overfield and C. A. Wraight, Biochemistry, 1980, 19, 3328. 

Davidson, Freeman, San Francisco, 1968, p. 198. 
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The commonest class of human antibody is immunoglobulin G (IgG), a Y-shaped 
glycoprotein (ca. 1.5 x lo5 daltons) whose structure is illustrated schematically in 
Figure 5(a). Two identical globular regions known as Fab (after ‘fragment antigen 
binding’) are connected flexibly to a third globular region Fc (after ‘fragment 
crystallizable’). It appears that the hinge angle 8 can take any value in the range 
10-180”. Binding can take place at  two separate antigen sites, either on a single 
particle (bacterium or virus) or on two different ones [see Figure 5(b)]. In terms of 
protein structure, IgG consists of two equivalent ‘light’ protein chains (- 2.3 x lo4 
daltons) and two equivalent ‘heavy’ chains (-5.0 x lo4 daltons) linked by 
disulphide bridges and non-covalent  interaction^.^^ Conventionally, the chains are 
subdivided into variable and constant domains as shown in Figure 5(c). When an 
antigen binds to the antibody, it nestles in a groove or cleft formed at the contact of 
the light and heavy chain variable domains. About 10 or so amino-acid residues are 
thought to be involved in the binding region.64 

A 

Figure 5 Representation of the structure of the antibody molecule IgG. (a)  Simple three-centre 
hydrodynamic model. At the hinge, which flexibly connects globular fragment Fc to binding 
fragments Fab, the angle 0 can take up a wide range of values. (b) The binding of IgG to two sites 
B on different antigen particles. (c) More detailed model showing light (L)  and heavy (H) 
polypeptide chains. The light chain has one constant region (C,) and one variable region ( VL); the 
heavy chain has three constant regions (Cnl, Cn2, and Cn3) and one variable region ( VH).  The 
hinge H consists of one or more disulphide interchain bonds. A is the antigen binding site 

Antibody flexibility has been demonstrated experimentally using nanosecond 
fluorescence s p e c t r o ~ c o p y . ~ ~ ~ ~ ~  A fluorescent chromophore, specifically located at 

6 3  G. W. Edelman and W. E. Gall, Ann. Rev. Biochem., 1969,38,415. 
64 M. W. Steward, ‘Antibodies: Their Structure and Function’, Chapman & Hall, London, 1984. 

66 C. L. Lovejoy, D. A. Holowka, and R. E. Cathou, Biochemistry, 1977, 16, 3668. 
J.  Yguerabide, H. F. Epstein, and L. Stryer, J.  Mol. BioI., 1970, 51, 573. 
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the antibody binding site, is excited with a short pulse of y-polarized light, and 
fluorescence intensities polarized in the x- and y-directions, t;, and Fy respectively, 
are measured as a function of time t. A function 

expresses how much the orientation of the transition moment has changed between 
absorption and emission. It was found by Yguerabide et that A ( t )  could be 
approximated as a sum of two exponential terms: 

In equation 96, cps and cpL are short and long rotational correlation times, and A,,& 
andf, are constants. Taking cps = 33 ns as the correlation time of an isolated Fab 
fragment, a fitted value of cp, = 168 ns was interpreted as being due to the 
rotational motion of the antibody molecule as a whole. [An unhydrated rigid 
sphere with the volume of IgG is estimated to have a rotational correlation time of 
cp = (soR)-' = 44 ns.] It was inferred65 that the Fab portions of the intact 
antibody are free to rotate over an angular range of ca. 33" in times of nanoseconds. 
More recently, Lovejoy and co-workers have found 66 similar correlation times, 
cps = 33 ns and cp, = 131 ns, again attributed to Fab segmental flexibility and 
global antibody rotation, respectively. The flexibility of the IgG molecule is related 
inter alia to the number of disulphide bonds in the hinge region [see Figure 5(c)]. In 
a comparison of intact and reduced antibodies, it was found 67 that reduction of the 
inter-heavy-chain disulphide bond increases significantly the internal flexibility of 
the IgG molecule. 

In modelling the IgG molecule as a flexibly connected three-sphere entity [as in 
Figure 5(a)], torsional interactions between Fab and Fc fragments must be 
consistent with the above correlation times, which can be computed directly in a 
Brownian dynamics simulation. The precise structures of antigenic determinants 
on most protein molecules are not known,68 but it does appear that interactions 
normally extend over some 3-44 nm2 of protein antigen surface. (See the report of 
an X-ray crystallographic d e t e r m i n a t i ~ n ~ ~  of the complex between egg-white 
lysozyme and the Fab fragment of a monoclonal anti-lysozyme antibody.) In 
simulating antibody-antigen encounters, as with the enzyme-substrate problem, 
we can determine how sensitive is the rate constant to such factors as particle size 
and shape, specific and non-specific electrostatic forces, and so on. 

D. Other Protein Diffusional Processes 
In biological membranes, various lipids and proteins are able to undergo lateral 

" L. M. Chan and R. E. Cathou, J. Mol. Biol., 1977, 112, 653. 
6 8  D. C. Benjamin, J. A. Berzofsky, I. J. East, F. R. N. Gurd, C. Hannum, S. J. Leach, E. Margoliash, J. G. 

Michael, A. Miller, E. M. Prager, M. Reichlin, E. E. Sercarz, S. J. Smith-Gill, P. E. Todd, and A. C. 
Wilson, Ann. Rev. Imrnunol., 1984, 2, 67. 

69 A. G. Amit, R. A. Mariuzza, S. E. V. Phillips, and R. J. Poljak, Nature (London), 1985, 313, 156. 
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diffusion within the two-dimensional bilayer str~cture.~’ There are two classes of 
membrane protein: peripheral and integral. The former associate with membranes 
predominantly through electrostatic interactions, and their diffusional motion 
resembles that near a charged electrode surface (vide supra). Integral proteins lie 
partially within the bilayer, where they exhibit extensive hydrophobic and 
electrostatic interactions with each other and the surrounding lipid  molecule^.^ 
Depending on the conditions, membrane proteins can exist in various states of 
aggregation. Pair distribution functions derived from freeze-fracture pictures of 
lipid bilayers resemble7 those from theoretical models of two-dimensional fluids. 
Effective protein-protein potentials calculated from experimental pair distribution 
functions are available73 for use in simulations. 

The function of a membrane appears to be intimately related to its fluidity.74 In 
the protein dynamics context, the temperature-dependent viscosity of the bilayer 
modulates the activity of enzymes and transport-proteins by affecting their lateral 
and rotational motions. To simulate the Brownian dynamics of membrane 
proteins, an external potential field could be used to confine the particles to motion 
in a plane. It would be interesting to compare simulated diffusion coefficients with 
those measured in fluorescence and phosphorescence decay  experiment^.^ 5*76 

Diffusion-controlled encounters occur in a wide range of assembly and 
polymerization processes involving proteins. An important and well-studied 
example is the assembly of monomeric G-actin (4.2 x lo4 daltons) into polymeric 
F-actin, a fibrous building block of muscle tissue. The mechanism is supposed to 
involve a nucleation stage (trimers are the most likely candidates as nuclei), 
followed by a polymerization stage to give a helical s t r u ~ t u r e . ’ ~ ~ ~ ~  Representations 
of monomeric and polymerized actin suitable for use in a simulation study are 
illustrated in Figure 6. Bonding between the roughly spherical G-actin molecules 
occurs through specific interactions of the type a-b and c 4 .  Solvent conditions 
sensitively affect the position of the F - G  eq~ i l ib r ium,~~  with electrostatic factors 
particularly important. There is a ‘critical’ actin concentration for helical 
polymerization which decreases with increasing ionic strength, reaches a minimum 
at an optimum ionic strength of 0.1 M NaC1, and then goes up again with further 
addition of electrolyte. At pH values close to the isoelectric point (pH x 4.7), 
random globular aggregation is superimposed on regular polymerization to F- 
actin. Divalent cations appear to have both specific and non-specific effects on the 

70 M. D. Houslay and K. K. Stanley, ‘Dynamics of Biological Membranes’, Wiley, Chichester, 1982. 
7 1  G. Benga and R. P. Holmes, Prog. Biophys. Molec. Biol., 1984, 43, 195. 
72 L. T. Pearson, S. I. Chan, B. A. Lewis, and D. M. Engelman, Biophys. J., 1983,43, 167; L. T. Pearson, J. 

7 3  J. Naghizadeh, in ‘Lecture Notes in Physics No. 172’, ed. K.-H. Bennemann, F. Brouers, and D. 

74 ‘Membrane Fluidity’ (Biomembranes, vol. 12), ed. M. Kates and L. A. Manson, Plenum, New York, 

75 R. Peters and R. J. Cherry, Proc. Natl. Acad. Sci. USA, 1982, 79, 4317. 
76 C. J. Restall, R. E. Dale, E. K. Murray, C. W. Gilbert, and D. Chapman, Biochemistry, 1984, 23, 6765. 
77 F. Oosawa and M. Kasai, in ‘Subunits in Biological Systems’, ed. S. N. Timasheff and G. D. Fasman, 

7 8  E. Korn, Physiol. Rev., 1982, 62, 672. 
79 M. Kasai, S. Asakura, and F. Oosawa, Biochim. Biophys. Acta, 1962, 57, 13. 

Edelman, and S. I. Chan, Biophys. J., 1984, 45, 863. 

Quitmann, Springer-Verlag, Berlin, 1982, p. 247. 

1984. 

Marcel Dekker, New York, 1971, part A, p. 261. 
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thermodynamics and the kinetics. At low ionic strengths, G-actin can be 
polymerized below the critical actin concentration by application of a shear flow 
field which presumably acts to promote nucleation." 

Figure 6 
aggregates are held together by specific attractive interactions of the type a-b and c-d 

Equilibrium between monomeric (G)  and oligomeric ( F )  forms of actin. Zn this model, 

Another possible area for Brownian dynamics is in modelling the folding and 
unfolding of globular proteins.81,82 Here we have in mind the long-time diffusional 
motions, rather than the rapid conformational  fluctuation^.'^*'^ That is, the 
refolding of a denatured protein molecule may be envisaged as the merging of 
embryo nuclei by a diffusion-collision process. This type of mechanism is 
consistent with a model 85m of a globular protein consisting of hydrophobic 
clusters loosely connected by covalent bonds, and held in fixed spatial orientations 
by interacting polar groups on the cluster surfaces. Such a model protein would 
thermally denature in two stages: an initial phase involving movement of intact 
clusters relative to one another, followed by a second phase involving disruption of 
hydrophobic clusters. Co-operativity would come predominantly from the second 
phase. Also of interest, in addition to thermal denaturation, is protein unfolding at a 
solid or fluid interface, the kinetics of which is important in the field of food 
 colloid^.^' 

7 Simulation of Subunit Models 
Complex biological structures can be modelled as a collection of connected 
subunits. To simulate the dynamics of structures which possess some degree of 
rigidity, it is necessary to place constraints on the relative motions of different 
subunits within the total structure. Allison and McCammon have described" a 

J. Borejdo, A. Muhlrad, S. J. Leibovich, and A. Oplatka, Biochirn. Biophys. Acta, 1981, 667, 118. 
'Protein Folding', ed. R. Jaenicke, Elsevier/North-Holland, Amsterdam, 1980. 

82 N. G6, Ann. Rev. Biophys. Bioeng., 1983, 12, 183. 
83 R. J. P. Williams, Biol. Rev., 1979, 54, 389. 
84 CIBA Foundation Symposium No. 93, 'Mobility and Function in Proteins and Nucleic Acids', Pitman, 

London, 1982. 
K. Wiithrich and G. Wagner, Trend Biochem. Sci., 1978, 3, 227. 

E. Dickinson and G. Stainsby, 'Colloids in Food', Applied Science, London, 1982. 
S. A. Allison and J. A. McCammon, Biopolymers, 1984, 23, 167. 

86 K. Wiithrich, H. Roder, and G. Wagner, in ref: 81, p. 549. 
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rigorous method of imposing constraints in Brownian dynamics. The procedure is 
based on the SHAKE molecular dynamics algorithm devised by Ryckaert et 
and subsequently improved by Ciccotti et aL90 

In a rigid body of N spherical subunits, N(N - 1)/2 inter-subunit distances are 
invariant. Neglecting gradient terms, the unconstrained Brownian dynamics step is 
[see equation 78 and note change from scalar to vector notation ( 3 N -  N ) ] :  

where the prime denotes the new, unconstrained co-ordinates of subunit i, and fl  is 
the total force acting on subunitj, but excluding forces of constraint. The corrected 
co-ordinate ri is given by 

N 
6ri = ri - ri‘ = (At /kT)  0:: @ 

j =  1 

where @ is the net force of constraint acting on subunit j .  Allison and 
McCammon have shown88 that 6ri can be represented as 

where rk,, = r’, - ri ,  the labels m and n refer to subunits restricted by the pth 
constraint, d,, is the constrained distance between rn and a, NC is the total number 
of constraints, and 

Enforcement of the pth constraint partially destroys those enforced previously. So it 
is necessary to repeat the cycle of enforcing all constraints until they are satisfied 
within a specified tolerance level. The procedure reduces to that of Ryckaert et al.89 
in the absence of hydrodynamic interactions, i.c. when 

The Brownian dynamics algorithm with constraints has been tested for an 
isolated wormlike chain” and a pair of rigid cubic octamer particles.38 The 
method offers the opportunity for modelling globular proteins and bacterial viruses 
as multisubunit structures like those described by Garcia de la Torre and 
B l o ~ m f i e l d . ~ ~ . ~ ~  Using the above algorithm, we can see how, for instance, a model 

89 J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J.  Comput. Phq’s., 1977, 23, 327. 
90 G. Ciccotti, M. Ferrario, and J.-P. Ryckaert, Mol. Phys., 1982, 47, 1253. 
91 S. A. Allison and J. A. McCammon, Biopolymers, 1984, 23, 363. 
92 J. Garcia de la Torre and V. A. Bloomfield, Eiopolymers, 1977, 16, 1779; 1978, 17, 1605. 
93  J.  Garcia de la Torre and V. A.  Bloomfield, Quart. Rev. Eiophq’s., 1981, 14, 81. 
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of the antibody-antigen encounter could be successively refined by considering a 
sequence of multisubunit structures of increasing complexity. 

8 Concluding Remarks 
Research in colloid science has led to a resurgence of interest in the Brownian 
motion of small interacting  particle^.'^ This article has tried to show that the 
concepts used in colloid science have a broader biological relevance. In particular, 
from statistical mechanics and fluid mechanics is derived a Brownian dynamics 
computational algorithm suitable for simulating diffusional processes involving 
entities like enzymes, immunoglobulins, and redox proteins. A protein is modelled 
as a single Brownian sphere, or a cluster of connected spheres, and account is taken 
of electrostatic and other forces to whatever level of complexity is feasible under the 
circumstances. 

The development of reliable electrostatic potentials of mean force between 
proteins and their subunits is a requirement for substantial progress in this field. 
The electrostatic interaction between closely approaching proteins can be 
represented 9 5  by so-called 'high-dielectric' models, and numerical results of this 
type have been recently reported by Matthew and co-workersg6 for the putative 
reaction complex between flavodoxin and ferricytochrome c. Their calculations 
show that the two molecules begin to become orientated significantly by the 
electrostatic field at separations closer than ca. 0.7 nm, when the interaction free 
energy is some 2 kT less than the sum of free energies of the isolated molecules. An 
allowance for electrostatic screening accounts for the experimental increase in 
flavodoxin-cytochrome c association rate at lower ionic strengthsg7 Cases where 
electrostatic interactions between protein subunits are important include salt 
bridges in haemoglobin and the superstructure of virus-coat proteins.98 

Computer experiments are most useful when they can be compared directly with 
real experiments. Amongst the techniques available for studying colloidal particle 
m ~ t i o n , ~  quasi-elastic light scattering is particularly useful. It is encouraging to 
note, therefore, that a recent light-scattering studyg9 of aggregating proteins gives 
information on aggregate structures and rate constants which are suitable for 
comparing with Brownian dynamics simulations. The techniques of nuclear 
magnetic resonance1" and quasi-elastic neutron scatteringlo' are also being 
increasingly applied to protein dynamics, and it seems likely that they will also 
provide useful data for comparing with the computer simulations, and with 
analytic theories of the many-body hydrodynamic problem.' O 2  

94 E. Dickinson, Annu. Rep. Prog. Chem.. Sect. C ,  1983, 80, 3. 
95 A. Warshel and S. T. Russell, Quart. Rev. Biophys., 1984, 17, 283. 
96 J. B. Matthew, P. C. Weber, F. R. Salemme, and F. M. Richards, Nature (London), 1983, 301, 169. 
97 R. P. Simondsen, P. C. Weber, F. R. Salemme, and G. Tollin, Biochemistry, 1982, 21, 6366. 
98 M. F. Perutz, Science (New York), 1978, 201, 1187. 
99 J. Feder, T. Jsssang, and E. Rosenqvist, Phys. Rev. Lett., 1984, 53, 1403. 

l o o  G. R. Moore, R. G. Ratcliffe, and R. J. P. Williams, Essays Biochem., 1983, 19, 142. 
lo '  H. D. Middendorf, Ann. Rev. Biophys. Bioeng., 1984, 13,425. 
lo' P. Mazur, Can. J .  Phys., 1985, 63, 24. 
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Appendix 
Tensor Multiplication *.-The dot product of tensor 7 
notation, is given by 

and vector w ,  in matrix 

where T t  is the transpose of T. The dot product is sometimes written more 
concisely using the summation convention, i.e. 

( T  V)k = T k i V i  

where it is agreed that the indices run from 1 to 3. The inner product of two second- 
order tensors S and T is itself a second-order tensor: 

(A21 

(s ‘ T ) i k  = SimTmk (A31 

The double inner product of S and 7 is given by 

S : T = Tr(S 7 )  = SimTmi 

where Tr is the trace. The double inner product of a third-order tensor B and a 
second-order tensor T is a vector: 

(A41 

( B  : 7 ) i  = B i k m T m k  ( T :  B ) i  = TkmBmki (A51 

The cross product of tensor T and vector w is a tensor: 

(T X v ) i k  = - T~,,E,,L~V~ ( V  X T ) ,  = E i W V p T q k  (A61 

In equation A6, B is the Levi-Civita density. 

* For further details see, for instance, the book ‘Cartesian Tensors’ (Ellis Horwood, Chichester, 1982) by 
A. M. Goodbody, from which the nomenclature adopted here was taken. (There is a summary of tensor 
manipulation, with particular reference to fluid mechanics, in the Appendix to ref: 13.) 
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